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Abstract 

The structural and dynamic properties of polymers, with excluded volume interactions, in simple shear flow, are investigated by a Monte- 
Carlo algorithm. Chain lengths of 5, 100 and 150 beads have been studied. For middle-sized polymers (100 or 150 beads), in strong shear, 
after the polymers have reached maximum elongation, beyond a shear rate threshold, the rear back of the polymer chains begins to fold and to 
spiral, in the wake of the running elongated polymer head. The potential part of the polymer’s shear viscosity is evaluated at different shear 
rates, using non-equilibrium Monte-Carlo simulation. In spite of large statistical fluctuations of the shear viscosity computations, simulations 
for middle-sized polymers (100 or 150 beads) show a shear thinning behaviour. The simulation results should be compared with experiments. 
0 1998 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

Many extensive computer studies have been carried out 
on polymer problems, and various Monte-Carlo (MC) 
devices have been developed to generate efficiently macro- 
molecular configurations [l]. There is no unique way to 
construct models of polymer systems, from lattice models 
to off-lattice models. 

Many authors have studied kinetics of polymer chains 
with excluded volume on a lattice [2,3]. The ‘slithering 
snake’ model has been used to generate dynamic self- 
avoiding random chains on a lattice [4,5]. Some new 
schemes involving nonlocal move have been introduced 
[6-91. In addition, the static properties of continuum, off- 
lattice and multichain systems have been investigated by a 
reptation Monte-Carlo algorithm [lo]. 

Lai and Binder [ 1 I] have investigated grafted polymer 
layers under shear flow, using a Monte-Carlo (MC) simula- 
tion. Duering and Rabin [12] have reported Monte-Carlo 
(MC) simulation of polymers in shear flow near repulsive 
boundaries. Pamas and Cohen [ 131 have studied anchored 
polymer chains in simple shear flow, using Brownian 
dynamics simulation. Kremer and Grest [14] have used 
molecular dynamics and Brownian dynamics to investigate 
entangled polymer melt. This paper aims at investigating 
structural and rheological properties of polymers in 
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homogeneous and unbounded shear flow, especially at 
very high shear rates. 

2. Methods 

2.1. Model and Monte-Carlo simulation 

In order to investigate polymer shear flow, we have 
chosen the simplest off-lattice polymer model. Each poly- 
mer is modelled by a succession of N = 5, 100 and 150 
spherical monomers, of radius u = 1, jointed freely together 
by rigid bonds of length 1 = 1, at arbitrary angles. Mono- 
mers are free to move, subject to the rigid bonds constraint 
1= 1. Any pairs of monomers interact via a repulsive 
(shifted) Lennard-Jones hard potential, which takes 
account of the excluded volume in a convenient manner: 

U(R)=e.[(;)‘*-2.(;)7 R<a 

U(R) = 0 R>O 

where R is the distance between monomers, and E = u = 1. 
The steps of the Monte-Carlo procedure then consist of 

random rotations of bonds around the axis connecting the 
nearest neighbours beads along the chain, as indicated in 
Fig. 1. 

The Metropolis algorithm is reported elsewhere [ 15,161. I 
will recall the salient features. For each polymer chain, each 
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Fig. 1. Model of freely jointed chain: each polymer consists of N mono- 
mers, jointed together by rigid bonds of length 1 at arbitrary angles. The new 
position of a monomer i may be chosen by assigning an random angle 6, 
from the interval [ - 0.5 rad, + 0.5 rad]. 

bead is moved successively: bead l,..., bead i ,..., bead N. 
For example, bead i is rotated by an angle 4i, selected ran- 
domly from the interval [ + 0.5 rad, - 0.5 rad], as described 
in Fig. 1. The bead interaction energy AEi before and after 
the rotation are then compared. This virtual bead rotation is 
only carried out if the probability weight Wi = Min 
{ exp( -AE$U’), 1) exceeds a random number RAND dis- 
tributed uniformly in the interval from zero to one. When 
thermal equilibrium is reached at a canonical temperature T, 
the Metropolis algorithm generates an ensemble of con- 
figurations distributed according to the Boltzmann weight. 

The static and dynamic properties of such a simple model 
are trivial: the configurations of the chains for N large are 
Gaussian distributed, and their relaxation is described by the 
Rouse model [ 17,181. This model is certainly a drastic over- 
simplification, which ignores chain connectivity and flexi- 
bility, and does not take account of the entanglement effects 
in polymer melts. However, this model is certainly fitted for 
non-equilibrium Monte-Carlo simulation. Via this model, 
the shear flow simulation is easily performed. 

2.2. Simulation of shear-flow 

We have considered polymers of N = 5, 100 and 150 
monomers, moving in homogeneous and unbounded flow. 
We have used periodic boundary conditions for polymers 
consisting of N = 5 monomers, and free boundaries for 
polymers consisting of N = 100 and 150 monomers. 

A simple shear flow is introduced such that the velocity 
field is directed along the x-axis, and the gradient field along 
the y-axis: 

v, = +.y 

where i, is the shear rate. 
The MC step is chosen as an arbitrary unit of time dr = 1. 

During a small amount of time dr, the induced displacement 

of monomer i, located at (x;, vi, ZJ is 

(Ax), = T.(yJ.dT (2) 

So, every 250 or 500 MC steps, we have chosen to update 
the position of each monomer i, and to add to its projection 
on the x-axis the flow-induced displacement (Ax)~. This dis- 
placement is subject, of course, to the rigid bonds constraint 
1 = 1, so the location of the nearest neighbour bead i + 1 
along the y-axis and z-axis: vi+1 and z,+~ , must be corrected 
according to this constraint. 

3. Result 1: Structural study of polymer configurations 
in shear flow 

Polymer chains, consisting of N = 100 monomers, have 
been investigated, in the presence of simple shear flow, with 
different magnitudes of shear rates 4, from T = lto + = 24, 
at canonical temperature kT/& = 0.8. Polymer chains, con- 
sisting of N = 150 monomers, have been considered, at 
shear rates i/ in the interval [+ = 0.1, i/ = 221, at temperature 
kT1.z = 1.5. Finally, polymer chains, consisting of N = 5 
monomers, have been studied, at shear rates T ranging from 
+ = 1 to i/ = 24, at temperature kT/c = 0.8. 

Fig. 2 displays middle-sized polymer configurations (N = 
100 or 150), at canonical temperatures kT/r = 0.8 or 1.5, 
with a settled gradient velocity field + = 2. 

Already at shear rate + = 0.1, shear flow effect is per- 
ceptible as regards random walk fluctuations of the chains, 
because of the unit scale of the shear rate fixed by choice of 
parameters in the MC simulation. At shear rate + = 2 
(Fig. 2a), shear flow effect cannot be neglected. At higher 
shear rate T = 4 (Fig. 2b), all polymer chains (N = 150) are 
already stretched, but not still fully elongated in the shear 
flow x-axis. At shear rate ;/ = 6 (Fig. 2c), all polymer chains 
(N = 150) have reached their maximum elongation with 
respect to the flow direction x-axis. 

At higher shear rate T = 10 (Fig. 2d), the rear back of the 
polymer chains (N = 150), lingering behind in low velocity 
area (y = 0), begins to fold and to spiral, while the head of 
the polymer chains, located in higher velocity area, remains 
elongated. At shear rate i/ = 12 (Fig. 2e), the spiralled curls 
spread out all over the polymer chains, like an hydro- 
dynamic instability. At shear rate 4 = 16 (Fig. 2f), the poly- 
mer chains are disentangled, and move forward towards 
each other. 

All the successive polymer configuration sequences 
described above are condensed in Fig. 3, which displays 
the gyration radius R, for polymer chains consisting of 

Fig. 2. Middle-sized polymer configurations (N = 100 or N = 150 monomers), at temperatures kT/e = 0.8 or 1 S, with a settled gradient velocity field T = $+. 
(a) 4 = 2, N = 100, kT/.s = 0.8. Some polymer chains can withstand shear flow. (b) 4 = 4, N = 150, kT/.s = 1.5. Some polymer chains are stretched, but not still 
fully elongated in the shear flow x-axis. (c) T = 6, N = 150, kT/c = 1 S. All polymer chains have reached their maximum elongation with respect to the flow 
direction x-axis. (d) T = 10, N = 150, kT/c = I .5. Some parts of the polymer chains begin to fold and spiral while heads of the polymer chains remain elongated. 
(e) -+ = 12, N = 150, kT/s = 1.5. The spiralling curls spread all over the polymer chains. (f) y = 16, N = 150, kT/.s = 1.5. The polymer chains are disentangled 
and move forward towards each other. 



S. TatdPolvmer40 (1999)695-700 697 

150 

100 

50 

0 

-50 
100 150 

80 

c) 

40. 

0 - 

-lo- 

-a- 0 50 100 150 200 250 

50 

0 

-60 
100 150 

50 

0 

_wi 
50 100 150 200 

50 

0 

40 

-1OC 
0 50 100 150 200 250 



698 S. Tan/Polymer 40 (1999) 695- 700 

t N=lOO 

20 

y a) 

0 

ot*“““““““““I”“‘~‘~ ji 
0 5 10 15 20 25 30 

shear rate 

Fig. 3. Gyration radius R, for polymer chains of N = 150 and N = 100 
monomers. For N = 150 monomers, the polymer has reached its maximum 
elongation at shear rate y = 8. For y ranging from 9 = 0.1 to + = 10, R, 
increases, as the polymer chain starts to stretch. Beyond y= 10, R, 
decreases, as the spiralling curl spreads along the chain. For N = 100 
monomers, the polymer chain has already reached its maximum elongation 
at r = 5. 

N = 150 and N = 100 monomers, each monomer located at 
(Xi, Yi, Zi): 

where Ix,,, ycm, zcm] is the position of the centre of mass. 
For N = 150, the polymer chain has reached its maximum 

elongation at shear rate i, -L 8, and for i, ranging from 
i/ = 0.1 to T = 10, the gyration radius R, increases regularly, 
as the polymer chain proceeds to stretch. Beyond + = 10, the 
gyration radius R, decreases regularly, as the spiralling curl 
expands along the chain. For N = 100, the polymer chain 
has already reached its maximum elongation at shear rate 
?=5. 

Fig. 4 shows short-polymer chains configurations (N = 5 
monomers) in shear flow at shear rate T = 4. At low shear 
rates (+ < 4), short-polymer chains are elongated along the 
flow x-axis, as expected. However, at high shear rate, short- 
polymer chains are oriented at an angle 8 = 45” with respect 
to the x-axis (or y-axis), as displayed in Fig. 4a. Moreover, 
short-polymer chains form layers, regularly stacked along 
the z-axis, as displayed in Fig. 4b, which is a projection of 
short-polymer chains on the plane (x-z), and in Fig. 4c, 
which is a projection of short-polymer chains on the plane 
ti-2). 

3.1. Discussion 

For polymer chains consisting of N = 150 and N = 100 
monomers, stretching of the chain at increasing shear rate is 
expected, but what about the spiralling curl of the chain at 
high shear rate? 

X 
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Fig. 4. Short-polymer chains configurations (N = 5 monomers) at tempera- 
ture kT/c = 0.8, with a settled gradient velocity field 4 = 4. (a) Projection on 
a (n-y) plane. The short-polymer chains are oriented at an angle ~9 = 45” 
with respect to the x-axis (or y-axis). (b) Projection on a (x-z) plane. The 
short-polymer chains form layers, regularly stacked along the z-axis. (c) 
Projection on a b-z) plane. The short-polymer chains form layers, regu- 
larly stacked along the z-axis. 

If the velocity field gradient is very steep, the rear back of 
the polymer chain, located at lower velocity area, can no 
longer follow the head of the polymer chain, running at a 
higher velocity. Therefore, there is an accumulation of the 
monomers, lingering behind, in the wake of the running 
polymer head. To check the validity of these simulations, 
results should be compared with experiments. 

To my knowledge, no report of such spiralling behaviour 
has been documented, although the simulation pictures (Fig. 
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2e and Fig. 2f) may show some structural resemblance to the 
lamellar order in Block Copolymer under shear flow, 
described in Ref. [19]. In fact, this behaviour may bear a 
closer analogy with the Rayleigh-Btnard hydrodynamic 
instability [20]: above a thermal gradient threshold, convec- 
tion rolls appear in the liquid. 

4. Result 2: Investigation of polymer’s shear viscosity 

The shear viscosity can be deduced from the long time 
behaviour of the equilibrium stress autocorrelation func- 
tions, which appear in the Green-Kubo transport formulae 
for viscosity. The shear viscosity consists of the so-called 
‘potential’ component q++, the ‘kinetic’ component vKK, and 
the ‘cross’ terms component 771<$ [21]: 

V = V++ + 2.11K1+ ?~KK (4) 

where 

where t is time, b = llkT, V is the volume. For a system of 
N monomers, each of mass m, with positions and velocities 
ri and vi and interacting pairwise through a potential $(ri - 
rj), the stress tensors are: 

J$, = - ;~iii(&. (F) 
Y 

JK =m.~(vi),@i), 

shear rate - 2 
_ shear rate = 6 
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(3 

Fig. 5. Potential component of the stress tensor autocorrelation function, for 
short-polymer chains N = 5 monomers, at shear rates r = 2, 6 and 14. 

The way via linear response theory and time correlation 
functions is subject to significant statistical error. The 
signal-to-noise ratio is particularly unfavourable at long 
times. Non-equilibrium Monte-Carlo simulations [21,22] 
may be used to improve the efficiency with which transport 
coefficients are calculated, and allow the signal-to-noise 
level of the measured response to be increased. 

In addition, the potential component of the shear viscosity 
can be computed directly [21]: 

J+ 
rMJ = T 
Fig. 5 shows the potential component < J4(0).J,(t) > (t is 
time, here a MC step) of the stress tensor autocorrelation, 
for polymer chains N = 5 monomers, at shear rates + = 2, 6 
and 14. 

Fig. 6a displays the potential component of the shear 
viscosity q++ for polymer chains consisting of N = 100 
monomers, at temperature kT/c = 0.8. The potential part 
IJ+$ of the shear viscosity is divided by a factor of 2 when 
the shear rate T varies from 4 = 2 to i/ = 22. 

10 
shear rare 

b) 
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Fig. 6. Potential component of the shear viscosity for polymer chains of N = 
100 or N = 150 monomers, at temperature kT/c = 0.8 or 1.5.(a) N = 100 
monomers, kT/c = 0.8 The potential part of the shear viscosity is divided by 
a factor of 2 when the shear rate T varies from + = 2 to 9 = 22. (b) N = 150 
monomers, kT/E = 1.5. The potential component of the shear viscosity is 
divided by a factor of 2.5 when the shear rate ;/ varies from T = 0. I to 
-9=22. 
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Fig. 7. Potential component of the shear viscosity, for polymer chains of 
N= 5 monomers at temperature kT/.z = 0.8 The variation of the potential 
component of the shear viscosity is small (the viscosity is divided by a 
factor of 7/6 when the shear rate 9 varies from 4 = 2 to T = 14). 

Fig. 6b shows the potential component of the shear 
viscosity ne$ for polymer chains consisting of N = 150 
monomers, at temperature kT/s = 1.5. The potential part 
n++, of the shear viscosity is divided by a factor of 2.5 
when the shear rate + varies from T = 0.1 to i/ = 22. 

Finally, Fig. 7 displays the potential part of the shear 
viscosity n++ for polymer chains consisting of N = 5 mono- 
mers, at temperature kT/s = 0.8. The variation of VI++ of the 
shear viscosity is small (the variation factor is 7/6 when the 
shear rate i/ varies from i/ = 2 to i/ = 14). 

4. I. Discussion 

The potential part y4+ of the shear viscosity for polymer 
chains of N = 150 and N = 100 monomers, is subject to 
large statistical fluctuations, because time correlation func- 
tions need an increased statistical effort, especially for 
large-sized polymer chains, which require long relaxation 
time. The correct reproduction of the dynamical behaviour 
requires long MC runs. 

In spite of these statistical fluctuations, simulations of 
middle-sized polymer chains, with N = 150 and N = 100 
monomers, show a trend towards shear thinning behaviour. 
This non-Newtonian behaviour [ 181 is less obvious for poly- 
mer chains of N = 5 monomers, whose potential part of the 
shear viscosity is almost constant in the range of shear rate i/ 
simulated. 

The experimental visco-elastic behaviour of polymer 
melts may be quite complex [ 18,231 . We do not expect a 
good agreement of our simulation results with experiments 
because the phantom chain model we used cannot give a fair 
account of the subtle interplay of intra- and inter-chains 
behaviour, such as entanglement effects.. . . However, we 
know that the Rouse model is not so bad, although this 

cannot be explained. We have also noticed that our normal- 
ized shear thinning slope is consistent with the experimental 
results of some copolymer melt (PA/P(MMA-CO-MAA) 
blends of polyamide with random copolymers of methyl 
methacrylate and methacrylic acid [24] and also data for 
the P-85 triblock copolymer of ethyline oxide (EO) and 
propylene oxyde (PO) [25]). 

5. Conclusion 

We have investigated the structural and rheological 
behaviour of polymer chains of N = 5, N = 100 and N = 
150 monomers, in a homogeneous and unbounded shear 
flow, via non-equilibrium Monte-Carlo simulation. We 
have reported the unexpected behaviour of polymer chains 
at high shear rate, such as chains spiralling. A shear thinning 
behaviour for N = 100 and N = 150 monomers is also 
reported. All these simulation results should be compared 
with experiments. 
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